ROBERT GORDON UNIVERSITY ABERDEEN

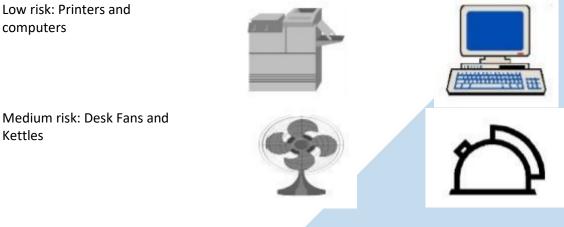
Formal Visual Inspection of Electrical Equipment Guidance

A STEP-BY-STEP GUIDE TO FORMAL VISUAL INSPECTION OF ELECTRICAL EQUIPMENT

Why Inspect?

The Health and Safety at Work etc. Act 1974 and the Electricity at Work Regulations 1989 require that electrical equipment used at work is maintained in a safe condition. The Health and Safety Executive advises that for offices and low risk environments it is generally sufficient for this 'maintenance' to take the form of a visual inspection of the equipment. Supplementary electrical testing should also be carried out at less frequent intervals or if a problem is suspected. (See 'Maintaining portable electrical equipment in offices and other low-risk environments IND(G)236L HSE Books).

What to Inspect?


You should inspect all equipment that is portable. Generally, this means equipment that has a cable and a plug that can be inserted into a 13A socket outlet.

Departments should make alternative arrangements for equipment that is permanently wired to the mains (e.g. via fused outlets). The testing and inspection of the fixed wiring installation within buildings is the responsibility of Estates & Property Services.

When to Inspect?

The intervals between inspection are not fixed by legislation. Departments must determine the frequency that is appropriate to each piece of equipment based on risk. Suggested frequencies are outlined in the Inspection and Testing of Portable Electrical Appliances Policy.

Equipment that is rarely moved and is not at risk of damage (e.g. computers) is likely to be low risk and requires less frequent inspection than equipment that is frequently moved, might be used in a damp environment (e.g. kettles, water baths) or may be subject to damage.

Office equipment - levels of risk (Low to Medium)

Equipment used in an office environment is rarely of the type that would be considered high risk. High risk equipment includes equipment such as portable electrical hand tools.

Non-Office Equipment - Levels of Risk (High)

High risk: Plug in drills and plug in circular saws

Who should carry out inspections?

It is not necessary to have an electrician carry out equipment inspections. Many members of university staff will possess the skills to perform this task if given the correct guidance. Further guidance on the competencies for staff for specific testing can be found in the Inspection and Testing of Portable Electrical Appliances Policy.

OK so what needs to be done?

By following the simple steps laid out below most staff should be able to carry out visual inspections of electrical equipment both safely and competently.

Now work through each of these steps - but remember, if you are in any doubt about what you are doing - STOP - and seek assistance.

As the title visual inspection implies, all you really need to do is look closely at the equipment. More than 95% of equipment faults can be found by visual inspection.

Step 1 - before you start inspecting

SWITCH OFF THE POWER AND UNPLUG THE EQUIPMENT

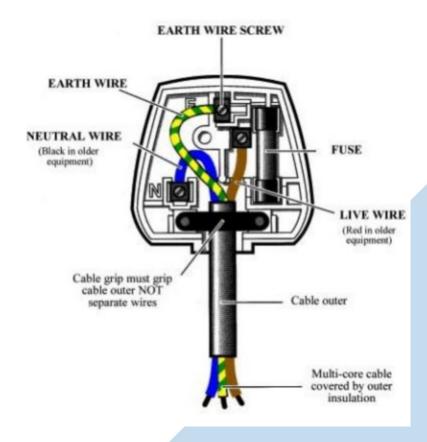
Never open the casing of the equipment. If you suspect, there is a fault inside the casing you should seek help from someone appropriately qualified.

Step 2 - the electrical cable

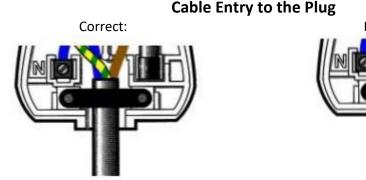
Run the cable slowly through your hands and feel for any lumps, cuts or rough areas. At the same time inspect all round the cable whilst working down it a little section at a time. Watch out for any areas that are discoloured, this might indicate an area of damage.

Be particularly vigilant with any part of the cable that may be prone to having equipment sat on it or that may be habitually curved or twisted. These are sections that are likely to become damaged.

Uncover any areas of cable that have been covered (e.g. with tape or a label) as they may be obscuring joints or areas of damage. Cables should not generally have any joints that are made by


means other than standard connectors. Be suspicious of any joints if they are not formed by fully enclosed, solid, standard connectors. Have them checked by someone suitably qualified.

If any part of the outer insulation of the cable is breached, or if you have reason to believe that the wires within it may be damaged, refer immediately to Step 5.


Step 3 - the plug

This illustration below shows a correctly wired plug:

Cable entry to the plug

Begin your inspection of the plug by looking at the point where the cable enters it. The outer insulation of the cable should be tightly gripped by the plug cable grip and none of the thinner internal wires should be visible from the outside of the plug.

NOT like this:

The plug casing

Next, look at the plug itself. The casing should not be cracked, chipped or damaged. There should be no bent pins.

If the plug is not permanently bonded to the cable you should be able to open the casing using a small screwdriver. Again, look closely at the point where the cable enters the plug through the cable grip, this time examining it from the inside of the plug. As before, the outer cable should be securely gripped, and the thinner inner cables should emerge from the outer only beyond this point.

The wires within the plug

Next examine each of the individual thinner cables. It is not necessary to unwire the plug to do this. Make sure that the BROWN wire (RED in older equipment) is connected to the LIVE terminal (usually labelled L), that the BLUE wire (BLACK in older equipment) is connected to the NEUTRAL terminal (usually labelled N) and that the GREEN and YELLOW wire (GREEN in older equipment) is connected to the EARTH terminal (often labelled E, this is at the top of the plug).

Ensure that there are no damaged parts on any of the cables and make sure that there is no excess cable that may snag or be trapped when the plug is re-assembled. If any of the smaller cables are too long, you may see rub or pinch marks on the outer insulating surface.

You should check the point where the inner wires are connected to the plug terminals and ensure that there is not an excessive amount of bare wire exposed. Ideally the insulating outer should cover the inner conducting wire entirely and no conducting wire should be visible. In practice this is often difficult to achieve, and it may be

necessary to have a gap of about one to two millimetre of conductor showing between the insulating material and the terminal.

Finally check the connections at each terminal. Ensure that the conducting wire is securely housed and that no stray wires are sticking out. Make sure that the terminal screws are securely tightened.

What if there are only two wires inside the plug?

Remember that some appliances have a cable that contains only two wires (e.g. some desk lamps). If you see only two wires when you open the plug take a close look at the end of the cable where these wires emerge. Make sure that there isn't a third wire that has been cut off. You should also check that the two wires are connected correctly. This means that the BROWN (RED in older equipment) wire should be connected to the LIVE terminal and the BLUE (BLACK in older equipment) wire to the NEUTRAL just as they are when three wires are present.

In this case the only wire that should be missing is the GREEN and YELLOW connection to the EARTH terminal.

Equipment which is not earthed is usually called 'double insulated' or 'Class II' and is marked with the double square symbol and the cable has only two wires.

A two wire plug:

Is there more than one plug on the cable?

In some cases the cable may not be permanently fixed into the equipment but may have a plug or connector for that purpose. In this case you should also examine this for any sign of damage and to ensure that the outer cable is securely held in such a way that the inner cables are not visible. It is usual for this type of connector to be sealed and as a result no internal inspection is possible.

An example of a two plug lead:

Step 4 - the fuse

Any plug that is designed to make a connection between a piece of equipment and a mains socket should be fitted with a cartridge fuse. In the case of sealed plugs this fuse is located in a compartment that can be opened from outside the plug. This compartment is located on the face of the plug from which the pins protrude.

In unsealed plugs the fuse is located inside the body of the plug and is connected to the LIVE terminal next to the BROWN wire. When you open an unsealed plug to inspect the cables and connections the fuse should be readily visible.

In sealed plugs the fuse is accessed from a compartment located between the plug pins. An example is shown below:

When carrying out a visual inspection you should ensure that the plug has a fuse and that it has not been replaced by some other device (such as a piece of wire or silver foil).

It is also necessary to make sure that the fuse is of the correct type (rating). As a general rule, most office equipment should be fitted with a 5 amp fuse. Heaters, kettles etc. and appliances that use more power often require a 13 amp fuse.

The following table gives an indication of the fuse that should be used in some of the more common office equipment.

Equipment type = Fuse rating	
Equipment Type	Suggested Fuse Rating (Amps)
Desk lamp	3
Kettle	13
Computer	5
Vacuum Cleaner	13

It is possible to calculate the fuse rating required for equipment if you know how much electricity the equipment uses. Most equipment has a small plate or label (usually on the base or rear panel) giving the energy usage.

This is expressed as a certain number of WATTS (the initial W is frequently used as an abbreviation) for example a desk lamp may say 100W maximum.

If you know the energy usage then the correct fuse rating can be calculated using the table below:

'Wattage' of Equipment = Fuse Rating		
'Wattage' of Equipment	Fuse Rating	
Up to 600 Watts	3 Amps	
Between 600 Watts and 1000 Watts (1KW)	5 Amps	
Between 1KW and 3KW (3000 Watts)	13 Amps	

Step 5 - Putting the equipment back into service

No faults observed

If you have found no faults it is now a simple matter to reassemble the plug. Before putting the equipment back into use you should label the plug to show that an inspection has been carried out. This label should give details of the date of inspection and who carried out the inspection. Proprietary labels may be purchased, but it is perfectly acceptable to use self-adhesive labels so long as they remain attached to the plug until the next inspection.

A possible label layout for showing that equipment has been inspected is

Electrical Appliance Inspection

Date:	17/05/2000
Inspected by:	Joseph Bloggs, School of Engineering

If you found one or more faults:

If you found any of the following simple faults you are likely to be competent to correct the by yourself:

- Incorrect fuse Missing fuse
- Connections inside the plug are loose
- Outer cable is not gripped tightly by the cable grip.

After a little practice most people can rewire a plug if they have the correct equipment. If you do not have the correct equipment to do this job, or if you feel it is beyond your ability you should seek assistance.

If the cable is damaged, you should not attempt to repair this and should seek assistance.

If you have identified faults during the inspection the equipment should be taken out of service until and the fault reported. This can be achieved by removing it to a secure storage area. If this is not possible the plug should be removed to prevent use. In all cases the equipment should be labelled to indicate that it should not be used.

Step 6 - Keeping records

The department should keep a record of all of the equipment inspected. This record should include a description of the equipment, dates of each inspection and information about who carried out the inspection. You may also find it useful to record the size of fuse the equipment should have in its plug and to keep a record of any major faults and the steps taken to repair these.

Just before you go

Why don't you try the quiz. See if you can spot the faults in the plugs shown below. You'll find the answers at the end.

Plug A

Plug B

Plug C

Answers:

Plug A - no outer cable sheath and live and neutral wires reversed.

Plug B - plug broken and taped up

Plug C - wire wrapped round fuse, live wire (brown) too long, protective sheathing cut too far back on earth wire (yellow and green) and so too much wire is exposed.

Robert Gordon University, Garthdee Rd, Aberdeen AB10 7AQ